Chemical and genetic validation of dihydrofolate reductase–thymidylate synthase as a drug target in African trypanosomes

نویسندگان

  • Natasha Sienkiewicz
  • Szymon Jarosławski
  • Susan Wyllie
  • Alan H Fairlamb
چکیده

The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase-thymidylate synthase (DHFR-TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR-TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR-TS is essential for parasite survival and represents a promising target for drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase

Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusi...

متن کامل

Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria.

Analysis of a genetic cross of Plasmodium falciparum and of independent parasite isolates from Southeast Asia, Africa, and South America indicates that resistance to pyrimethamine, an antifolate used in the treatment of malaria, results from point mutations in the gene encoding dihydrofolate reductase-thymidylate synthase (EC 1.5.1.3 and EC 2.1.1.45, respectively). Parasites having a mutation f...

متن کامل

An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity pr...

متن کامل

New Antifolates: Pharmacology and Clinical Applications.

Many new antifolate compounds with unique clinical properties are currently in clinical development. Some of these agents have been rationally designed to circumvent known mechanisms of resistance to methotrexate, the most useful and extensively studied antifolate in clinical practice. Resistance to methotrexate can result from decreased active transport into cells, decreased polyglutamation re...

متن کامل

New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.

Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected ant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Microbiology

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2008